KLEMS and the U.S. National Accounts

By Jon D. Samuels

Prepared for:

LAKLEMS Plenary Conference

December 11-12, 2017

Washington, DC

- Long-standing call for statistics on the sources of growth
 - Solow (1957), Denison (1967), Griliches and Jorgenson (1967)
 - Postwar Recovery, Big Slump, IT Boom, the Great Recession, Ongoing Recovery
 - "...differences between the BEA and BLS estimates have led many researchers to construct their own measures ...", Jorgenson and Landefeld (2006)
- BEA/BLS Integrated Industry-level production account (KLEMS) available since 2012
- This presentation: Describe this integrated KLEMS account and its relation to the U.S. National Accounts

- The U.S. statistical system is decentralized
 - BEA, BLS, CENSUS, FRB

- The BEA/BLS industry-level production account is "integrated"
 - Benchmark IO
 - Annual GDP by Industry Accounts
 - Expenditure side GDP
 - BLS measures of capital and labor

- Benchmark I-O accounts:
 - Based on economic census every five years
 - Commodity flow method produces benchmark estimate of final demand
 - Nominal inter-industry transaction tables
- GDP by industry accounts
 - Production approach
 - Quarterly and annual I-O accounts, nominal and chained quantity indexes
 - Annual covers 1947-2016, Quarterly covers 2005-2017Q2
- Expenditure side National Income and Product (NIPA) Accounts:
 - Quarterly and annual, nominal and chained quantity indexes, aggregated from estimates of C, I, G, NX
 - Annual covers 1929-2016; Quarterly covers 1947Q3-2017Q3
 - Used as the official GDP estimate
 - 14 Comprehensive revisions

• Before integration:

- Benchmark I-O accounts released before the comprehensive revision of the NIPAs and were not revised to reflect the results of comprehensive revisions
- After integration (with release of 2007 benchmark table)
 - Fully integrated with the time series of the NIPAs and the industry economic accounts. For example, 2007 benchmark I-O consistent with the 2013 July 2013 NIPA comprehensive revision
- Yields annual NIPA, GDP by industry, and input-output accounts that are fully consistent with the latest benchmark I-O table

• Integrated with the annual GDP by Industry Accounts

		INDUSTRY		TOTAL		OUTPUT		
		Α	В	INTERME- DIATE	PCE	INVEN- TORY CHANGE	TOTAL	
Energy, Materials, Services	Commodity A		35	35	260	10	270	305
	Commodity B	160		160	0	-8	-8	152
	Total intermediate	160	35	195				
	Total value added	145	117	262				
Capital, Labor	Compensation	100	20					
	Taxes on production and imports less subsidies	5	2					
	Gross operating surplus	40	95					
	OUTPUT	305	152		260	2	262	457

OUTPUT

FINAL USES

Input-output Use Table

INDUSTRY TOTAL

Intermediate Input prices are a combination of domestic commodity and import prices

Producer	Price
Indexes	

	A	В	INTERME- DIATE	PCE	INVEN- TORY CHANGE	TOTAL	
Commodity A		35	35	260	10	270	305
Commodity B	160		160	0	-8	-8	152
Total intermediate	160	35	195				
Total value added	145	117	262				
Compensation	100	20					
Taxes on production and imports less subsidies	5	2					
Gross operating surplus	40	95					
OUTPUT	305	152		260	2	262	45 7

-Industry Value- Added
Quantity Index
measured with
"Double Deflation"
-Yields productionbased estimate of
aggregate VA growth

- Estimation strategies for intermediate input prices
 - Use output prices (PPI) as a proxy for input prices
- Potential problem: Input prices need not track output prices.
 - Recognized example: Import price indexes (IPI's)
 - Research work with Rachel Soloveichik: "Intangibles and the Gap between Export and Domestic Prices: Implications for Measures of Growth and Productivity"

$$P_{YCi}Y_i^C = P_{YCDi}Y_i^{CD} + P_{YCXi}Y_i^{CX}$$

- Conclusion: Doesn't matter much for U.S. currently, but...

- Labor services is the flow of labor hours into production
- Important to account for heterogeneity in hours worked across worker types: Sex, Class (2), Age (8), Education (6), Industry(65)
- Tabulate hours and compensation rates for each cell
- Control Total for Class (1) Labor Compensation from NIPA
- Control Total for hours from the BLS
- Class (2) Wages assumed to be the same as Class(1) by S,A,E,I
- Implementation: U.S. Decennial Census, Annual March Survey from CPS, RAS
- Industry Labor input is a translog index over workers within industry

- Capital services is the flow of capital into production
- Important to account for heterogeneity in asset types: About 105 asset types, including R&D and entertainment originals, land and inventories
- Quantity of capital services by asset is the net productive stock via the perpetual inventory method
- Price of capital services is the rental cost
- Important that prices measured in constant quality units
- Industry capital input is a translog index over assets within industry
- Capital data provided by the BLS

- KLEMS data provides the internally consistent data to do "growth accounting"
- At the industry level (j):

$$\Delta \ln Q_j = \overline{w_{Kj}} \Delta \ln Q_{Kj} + \overline{w_{Lj}} \Delta \ln Q_{Lj} + \overline{w_{Xj}} \Delta \ln Q_{Xj} + \Delta \ln MFP_j$$

• (Direct) Aggregation across industries:

$$\Delta \ln V = \sum_{j} \overline{w_{j}} \frac{\overline{w}_{K,j}}{\overline{w}_{V,j}} \Delta \ln Q_{Kj} + \overline{w_{j}} \frac{\overline{w}_{L,j}}{\overline{w}_{V,j}} \Delta \ln Q_{Lj} + \overline{w_{j}} \frac{1}{\overline{w}_{V,j}} \Delta \ln MFP_{j}$$

• The Aggregate Production Possibility Frontier:

$$\Delta \ln V = \overline{w_{KA}} \Delta \ln Q_{KA} + \overline{w_{LA}} \Delta \ln Q_{LA} + \Delta \ln MFP_A$$

Industry Contributions to Aggregate Productivity Growth 1998-2015

- U.N. Manual *in progress:* "Handbook on Accounting for Global Value Chains."
- Chapter 4: "Extended" KLEMS
 - Objective: Industry-level production account for the world economy.
 - "Extended" refers to moving from World KLEMS (individual countries) to Integrated Global Production Account.
- No existing framework covers this for the world economy.
 - But Nomura and Miyagawa (2015) and Jorgenson, Nomura, and Samuels (2017) provide a proof of concept for Japan and the U.S.
 - Chapter 4 advocates for extending these to cover the world economy
- Will require collaboration and coordination

- Volume level index: $VLI_{\theta ijt} = X_{\theta ijtJ} / X_{\theta ijtU}$.
- Productivity level index: $ln TLI_{jt} = 0$

 $ln \ TLI_{jt} = (ln \ VLI_{Yjt} - \Sigma_{\theta} w_{\theta jt} \ ln \ VLI_{\theta jt})$

• Interpretation: relative efficiency with which inputs are transformed into output in the two economies; productivity gap

- Industry sources of aggregate TFP gap (Domar weights)
- Consistent with country-level national accounts

Japan-U.S. Aggregate TFP Gap

(Non-Mnf)

Industry Origins of Japan-U.S. Aggregate TFP Gap, 2015

Note: Industry contribution is Domar-weighted TFP gap.

TFP Level Index	Industry Contributions									
0 1		-8	-7	-6	-5	-4	-3	-2	-1	0
0,9 📕	8.Furniture and Fixture								0,	0
0,9 📕	7.Woods and Related Products								-0,	1
0,8 💻	6.Apparel and Leather Products								-0,	1 📕
0,9 🖡	20. Other Transportation Equipment								-0,	1 📕
0,9 📕	15.Metal Products								-0,2	
0,9 📕	12.Petroleum and Coal Products								-0,3	
0,8 💻	22.Rail Transportation								-0,3	
0,7 💻	24.Air Transportation								-0,3	
0,9 📕	25.Road Transportation								-0,3	
0,6	23.Water Transportation								-0,4	
0,7 💻	26.Other Trans and Storage								-0,4	
0,9 📕	10.Printing and Publishing								-0,5	
0,9 📕	16.Machinery								-0,6 📕	
0,9 📕	31.Real Estate								-0,8 💻	
0,7 💻	17.Computer and Electronic Products								-0,9 📃	
0,5	2.Mining							-	1,1	
0,8 💻	4.Foods							-1,	3	
0,6	1.Agriculture, Forestry, Fishery							-1,4		
0,6	28.Electricity and Gas							-1,5		
0,8 💻	30.Finance and Insurance							-1,7 📕		
0,9 📕	34.Other Services						-2,9 💻			
0,7 💻	29.Wholesale and Retail	-7	7,1 💻							

Note: Industry contribution is Domar-weighted TFP gap.

• The BEA/BLS Integrated Industry- level production account provides official statistics on the sources of growth that are updated annually

• Ongoing work to provide historical data, first back to 1987

Ongoing measurement challenges related to globalization and the digital economy

• Future direction for KLEMS community: World Production Account